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a b s t r a c t

In [J. Halton, Sequential Monte Carlo, Proc. Comb. Phil. Soc. 58 (1962), J. Halton, Sequential
Monte Carlo Techniques for the Solution of Linear Systems, J. Sci. Comp. 9 (1994) 213–257]
Halton introduced a strategy to be used in Monte Carlo algorithms for the efficient solution
of certain matrix problems. We showed in [R. Kong, J. Spanier, Sequential correlated sam-
pling methods for some transport problems, in: Harold Niederreiter, Jerome Spanier (Eds.),
Monte-Carlo and Quasi Monte-Carlo Methods 1998: Proceedings of a Conference at the
Claremont Graduate University, Springer-Verlag, New York, 2000, R. Kong, J. Spanier, Error
analysis of sequential Monte Carlo methods for transport problems, in: Harold Niederreiter,
Jerome Spanier (Eds.), Monte-Carlo and Quasi Monte-Carlo Methods 1998: Proceedings of a
Conference at the Claremont Graduate University, Springer-Verlag, New York, 2000] how
Halton’s method based on correlated sampling can be extended to continuous transport
problems and established their geometric convergence for a family of transport problems
in slab geometry. In our algorithm, random walks are processed in batches, called stages,
each stage producing a small correction that is added to the approximate solution devel-
oped from the previous stages. In this paper, we demonstrate that strict error reduction
from stage to stage can be assured under rather general conditions and we illustrate this
rapid convergence numerically for a simple family of two dimensional transport problems.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Monte Carlo (MC) simulations have provided a ‘‘gold standard” of computational support for many important problems of
science and engineering that are modeled using the radiative transport equation (RTE). While initial interest about 60 years
ago was focused on problems arising in nuclear design and engineering, that interest has widened greatly as computational
speed and efficiency have increased and now MC methods are routinely used for many other applications. The method is
used often to solve problems for which no closed form or other convenient analytic solutions are available – problems for
which it may be the only practical solution technique.

When the MC method is applied conventionally, however, its convergence is limited by the central limit theorem to the
rate OðW�1=2Þ, where W is the number of samples generated. This means that to obtain each new decimal digit of accuracy,
the sample size must be increased about a hundredfold. Because of this slow convergence, it is not unusual for difficult
Monte Carlo simulations to occupy days or even weeks of computer time to solve a single problem. Researchers have
. All rights reserved.
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therefore sought faster and more efficient numerical solutions to facilitate implementation of this versatile modeling tech-
nique. Variance reduction methods have been helpful but they cannot alter the underlying slow convergence rate unless
some sort of sequential strategy is employed.

In 1962, Halton applied Monte Carlo sequential algorithms to matrix problems (see [1,2]). In his papers, Halton applied
specific variance reduction strategies successively in many stages, each of which is solved using conventional Monte Carlo
methods. Under suitable conditions, the error Em after the mth stage will be strictly bounded by the error Em�1 obtained in
the previous stage multiplied by a constant kðWÞ that depends on the number W of random walks used in each stage and on
the problem input, but not on the stage number m; i.e.,
Em 6 kðWÞEm�1; ð1Þ
E0 being the initial error. Most importantly, with a relatively small number W of random walks, one can often achieve
kðWÞ < 1. Thus, after m stages, the error is bounded by
Em 6 ½kðWÞ�mE0; ð2Þ
which characterizes geometric convergence (also called ‘‘exponential convergence” in [3,5]).
In the past 20 years, researchers, notably at Los Alamos National Laboratory and Claremont Graduate University, have

explored the possibility of applying similar ideas to continuous transport problems. Booth and his co-workers at Los Alamos
(see [3–6]) and Spanier and his co-workers at Claremont (see [7–11]) have adopted somewhat different approaches, but both
groups have achieved geometric convergence for a number of continuous transport problems. The Claremont group also
proved that convergence is geometric for a special class of model transport problems [10]. What has been lacking until
now, however, is a general formulation of the theory underlying many of these methods and approaches and a more general
proof of their geometric convergence. We present such a theory in this paper, establishing rigorously the conditions neces-
sary to guarantee geometric convergence for sequential correlated sampling Monte Carlo algorithms that can be applied to a
large class of continuous transport problems. In other papers, we will develop similar results for other adaptive Monte Carlo
methods, all of which have been shown to produce geometric convergence.

2. General principles

In this paper, we consider continuous transport problems that are formulated as integral equations of the form
WðPÞ ¼KWðPÞ þ SðPÞ ð3Þ
where
KWðPÞ �
Z

C
KðP;QÞWðQÞdQ ; P 2 C the phase space;

SðPÞP 0:
ð4Þ
We assume that the kernel KðP;QÞ is nonnegative and that there exists a constant M > 0 such that jSðPÞj 6 M and
jKðP;QÞj 6 M. We further assume that K satisfies either
max
P2C

Z
C

KðP;QÞdQ < 1 ð5Þ
or
max
Q2C

Z
C

KðP;QÞdP < 1; ð6Þ
either of which, together with (4), will ensure the existence and uniqueness of a nonnegative and bounded solution WðPÞ;
details may be found in [7] or in [15].

Remark. For transport equations given in the form of integro-differential equations, as long as the physical process has a
positive absorption probability in the problem phase space, condition (6) is always satisfied. Weaker conditions that also
suffice are discussed in [7].

For physical processes described by Eq. (3), one is often only interested in estimating a number of weighted integrals of
the solution. Therefore, our task can be formulated in terms of estimating one or more integrals:
I �
Z

C
WðPÞS�ðPÞdP � hW; S�i; ð7Þ
where S�ðPÞ is a known function and where, without loss of generality, S� can be assumed to be nonnegative. Thus, each con-
tinuous transport problem considered here is uniquely characterized by the known nonnegative functions SðPÞ;KðP;QÞ, and
one or more functions S�ðPÞ. In the physical context of such a problem, S describes a known source of radiation, KðP;QÞ de-
scribes how random walking ‘‘particles” move from state Q to state P in the phase space C; and the function S�ðPÞ incorporates
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properties of a radiation detector at points P in the phase space. Appropriate boundary conditions are also imposed to guar-
antee that a unique solution W of Eq. (3) exists.

Each Monte Carlo algorithm describes how random walks are to be generated and used to provide estimates of integrals
such as I and their errors. We follow the general approach of [7] here in which a probability model that mirrors features of
the physical model is constructed using a few basic ideas drawn from probability theory.

Our task is to describe a random walk process (a method for generating random walks), an (unbiased) estimating random
variable defined on the space X of all random walks for each choice of S� and demonstrate how the sequential application of
such estimators produces accelerated Monte Carlo convergence. A great variety of random walk processes and estimating
random variables is possible, each of which produces unbiased estimates of the desired weighted integrals, but all of which
produce different statistical errors. For ease of exposition we examine only one such sequential method here based on the
repeated use of correlated sampling, and one specific type of random variable, the so-called collision estimator (see [7]).
However, other sequential methods and estimators can be treated in analogous fashion. This flexibility is very useful in
the design of effective and efficient MC methods, for which one needs to strike a proper balance between computational
speed and accuracy, since both are involved in estimating the overall computational efficiency of the method.

The random walk process is defined by selecting a pair of nonnegative functions fbSðPÞ; bK ðP;QÞg subject to the conditions:
Z
C

bSðPÞdP ¼ 1 andZ
C

bK ðP;QÞdQ ¼ 1� p̂ðPÞ > 0:
ð8Þ
The function bS will be used to generate initial states P0 in the phase space, while bK will be used to produce successor states Q
conditioned by the current state P and the function p̂ðPÞ describes the probability of terminating a random walk in state P.
These functions determine random variables on the phase space C by means of
n0 � bSðQÞ;
nnjnn�1 �

bK ðnn�1;QÞ
1� p̂ðnn�1Þ

;

gQ � Bðp̂ðQÞÞ : Pðg ¼ 1Þ ¼ p̂ðQÞ; Pðg ¼ 0Þ ¼ 1� p̂ðQÞ

ð9Þ
where Bðp̂ðQÞÞ is a binomial random variable and where the symbol n � f ðQÞ means that n is sampled from the probability
density function f ðQÞ;Q 2 C. Then we define random variables f and x on the space X of all random walks
ðn0; n1jn0; . . . ; nkjnk�1; . . .Þ by
f¼ S�ðn0ÞbSðn0Þ
Sðn0Þþ

S�ðn0ÞbSðn0Þ
Kðn0;n1jn0ÞbK ðn0;n1jn0Þ

Sðn1Þð1�gn0
Þþ �� �þS�ðn0ÞbSðn0Þ

Kðn0;n1jn0ÞbK ðn0;n1jn0Þ
� � �Kðnn�1;nnjnn�1ÞbK ðnn�1;nnjnn�1Þ

SðnnÞð1�gn0
Þ � � � ð1�gnn�1

Þþ �� �

¼ S�ðn0ÞbSðn0Þ
xðn0Þ ð10Þ
where
xðn0Þ ¼ Sðn0Þ þ
Kðn0; n1jn0ÞbK ðn0; n1jn0Þ

Sðn1Þð1� gn0
Þ þ � � � þ Kðn0; n1jn0ÞbK ðn0; n1jn0Þ

� � � Kðnn�1; nnjnn�1ÞbK ðnn�1; nnjnn�1Þ
SðnnÞð1� gn0

Þ � � � ð1� gnn�1
Þ þ � � �

ð11Þ
Notice that the estimators defined by (10) and (11) are collision estimators in the language of [7], meaning that they produce
nonzero tallies for each collision point. Use of other estimating random variables, such as terminal and track length estima-
tors [7], can also be accommodated with modest alterations in the theory.

We next describe how to make use of the random variables defined above by (10) and (11). Assume that we want to esti-
mate the integral I defined by (7). The initial step is to choose the function pairs fbSðPÞ; bK ðP;QÞg to satisfy (8). We initialize the
estimation eI of I by
eI ¼ 0:
Next we outline the sampling/estimation procedure by tracing one random walk. The starting state space vector P0 (which
represents an initial collision point) is sampled from bSðPÞ and the contribution recorded from this event is
eI ¼ eI þ S�ðP0ÞbSðP0Þ
SðP0Þ:
We then check for absorption at P0 using the absorption probability at that vector:
p̂ðP0Þ ¼ 1�
Z

C

bK ðP0;QÞdQ :
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If the random walk is absorbed, we continue to the next random walk. Assume that the random walk is scattered at P0. We
then sample the next collision point P1 from
bK ðP0; PÞ

1� p̂ðP0Þ
and record the contribution from it as
eI ¼ eI þ S�ðP0ÞbSðP0Þ
KðP0; P1ÞbK ðP0; P1Þ

SðP1Þ:
We check again for absorption at P1 using the absorption probability
p̂ðP1Þ ¼ 1�
Z

C

bK ðP1;QÞdQ :
This process can be repeated until the random walk is terminated either through absorption or leaving the phase space do-
main. Generally, if the random walk encounters collisions at P0; P1; . . . ; Pk, the final contribution from the random variable we
have defined is
eI ¼ eI þ S�ðP0ÞbSðP0Þ
KðP0; P1ÞbK ðP0; P1Þ

� � � KðPk�1; PkÞbK ðPk�1; PkÞ
SðPkÞ:
After we have generated all of the random walks, we compute the average of eI over the total number of random walks to
obtain a final estimate of the integral I. Second moment estimates are obtained in a similar manner and the variance is deter-
mined in the usual way from these estimates of the mean and the second moment.

Concerning this algorithm we have

Theorem 1. Assume that P 2 C is a fixed but arbitrary point of phase space and that xðPÞ and f are defined by (11) and (10),
respectively with n0 ¼ P. Then,
E½xðPÞ� ¼ WðPÞ; ð12Þ
and
E½f� ¼ I: ð13Þ
Proof. Focusing on the general term xnðPÞ of the expression for xðPÞ we calculate
E½xnðPÞ�¼ E
KðP;n1jn0¼ PÞbK ðP;n1jn0¼ PÞ

� � �Kðnn�1;nnjnn�1ÞbK ðnn�1;nnjnn�1Þ
SðnnÞð1�gPÞ � � � ð1�gnn�1

Þ
" #

¼
Z

C

bK ðP;P1ÞR
C
bK ðP;P0ÞdP0

dP1 � � �
Z

C

bK ðPn�1;PnÞR
C
bK ðPn�1;P

0ÞdP0
dPn �

KðP;P1ÞbK ðP;P1Þ
� � �KðPn�1;PnÞbK ðPn�1;PnÞ

SðPnÞ � ð1� p̂ðPÞÞð1� p̂ðP1ÞÞ � � �ð1� p̂ðPn�1ÞÞ:
Using (8), this reduces to
Z
C

KðP; P1ÞdP1

Z
C

KðP1; P2ÞdP2 � � �
Z

C
KðPn�1; PnÞSðPnÞdPn;
which is exactly the general term of the Neumann series expression of the solution WðPÞ.
As for (13), from (11) we have
E½f� ¼ E
S�ðPÞbSðPÞ xðPÞ
" #

¼
Z

C

S�ðPÞbSðPÞ E½xðPÞ�bSðPÞdP ¼
Z

C
S�ðPÞWðPÞdP ¼ I:
proving (13). h

To prove geometric convergence we will need to establish relationships between the variances of our estimators in suc-
cessive stages. This can be done by making use of transport-like equations for the variances and using these to relate the
variance after the mth sequential stage to that of the previous stage. The final step in our proof involves applying Tcheby-
cheff’s inequality to the random variables responsible for the estimates. We will state the needed results here, leaving the
detailed proof for Appendix.

Theorem 2. The variance of xðPÞ, Vx½xðPÞ� satisfies
Vx½xðPÞ� þ ðWðPÞÞ2 ¼
Z

C

KðP;QÞbK ðP;QÞ
 !2

fVx½xðQÞ� þ ðWðQÞÞ2gbK ðP;QÞdQ þ ðWðPÞÞ2 � ðWðPÞ � SðPÞÞ2; ð14Þ



9766 R. Kong, J. Spanier / Journal of Computational Physics 227 (2008) 9762–9777
and the variance of f, V f½f�, can be obtained by
V f½f� þ hW; S�i2 ¼
Z

C

S�ðPÞbSðPÞ
 !2

fVx½xðPÞ� þ ðWðPÞÞ2gbSðPÞdP ð15Þ
A sketch of the argument needed to prove this result can be more easily recognized perhaps by examining the second mo-
ment of the estimator instead of the variance. Since WðPÞ ¼ E½xðPÞ� by Theorem 1, Eq. (14) is equivalent to the transport
equation for the second moment:
M2
x½xðPÞ� ¼

Z
C

KðP;QÞbK ðP;QÞ
 !2

M2
x½xðQÞ�bK ðP;QÞdQ þ ðWðPÞÞ2 � ðWðPÞ � SðPÞÞ2 ð16Þ
This equation is very plausible because the source term represents the expected square of the direct contribution from ter-
minations at the initial state P selected, while the integral term represents the expected square of all other contributions
resulting from terminations at states Q beyond the initial state. To see the latter point more clearly, rewrite (16) as
M2
x½xðPÞ� ¼

Z
C
ð1� p̂ðPÞÞ KðP;QÞbK ðP;QÞ

 !2

M2
x½xðQÞ�

bK ðP;QÞR bK ðP;QÞdQ
dQ þ ðWðPÞÞ2 � ðWðPÞ � SðPÞÞ2
so that the integral term is more easily recognized as requiring continuation of the random walk beyond its initial state, P. As
we will see in Appendix, a complete proof of results such as (14) requires making repeated use of the relationships linking
unconditional and conditional means and variances, which leads to the Neumann series representation for the solution of
(14).

3. Sequential correlated sampling methods

In this section, we construct a sequential correlated sampling MC algorithm using the estimators developed in the pre-
vious section. As we mentioned earlier, a similar algorithm was first used by Halton [1] in 1962 to solve discrete transport
(matrix) problems.

To solve Eq. (3), we begin with an initial guess ~w0ðPÞ of the solution at P (which could be taken to be zero) and then intro-
duce a first correction w1ðPÞ by setting
WðPÞ ¼ ~w0ðPÞ þ w1ðPÞ: ð17Þ
Substituting (17) into (3) produces an equation for w1ðPÞ
w1ðPÞ ¼ Kw1ðPÞ þ S1ðPÞ; ð18Þ
where
S1ðPÞ ¼ SðPÞ � ~w0ðPÞ þ K ~w0ðPÞ: ð19Þ
Applying conventional Monte Carlo methods to (18) produces an approximate solution ~w1ðPÞ.
Assuming that we have obtained ~w1ðPÞ; ~w2ðPÞ; . . . ; ~wm�1ðPÞ, introduce a new function wmðPÞ by setting
WðPÞ ¼ ~w0ðPÞ þ ~w1ðPÞ þ � � � þ ~wm�1ðPÞ þ wmðPÞ: ð20Þ
Substituting (20) into (3) then produces an equation for the mth stage correction wmðPÞ
wmðPÞ ¼ KwmðPÞ þ SmðPÞ; ð21Þ
where
SmðPÞ ¼ Sm�1ðPÞ � ~wm�1ðPÞ þ K ~wm�1ðPÞ ¼ SðPÞ � eWm�1ðPÞ þ K eWm�1ðPÞ; ð22Þ
and where
eWm�1ðPÞ ¼ ~w0ðPÞ þ ~w1ðPÞ þ � � � þ ~wm�1ðPÞ: ð23Þ
Applying conventional Monte Carlo methods to (21) produces an approximate solution ~wmðPÞ.
Repeating this recursive process produces a sequence of approximations eW1ðPÞ; . . . ; eWmðPÞ to WðPÞ. It is then natural to

ask: does this sequence converge to the true solution WðPÞ? If so, what is the convergence rate? In this section, we will give
a positive answer to the first question, and prove that the convergence is actually geometric.

Theorem 3. Assume that either (5) or (6) is satisfied, and that the phase space C has finite Lebesgue measure; i.e., there is a
constant jC such that
jC �meas½C� <1: ð24Þ
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Then for any e > 0 and k < 1, there is a threshold number, W0, of random walks per adaptive stage, such that when at least W0

random walks are generated in each adaptive stage,
PrfsupP2CjWðPÞ � eWmðPÞj 6 ksupP2CjWðPÞ � eWm�1ðPÞjg > 1� e: ð25Þ
The integer W0 is independent of the stage number m.

Proof. First, we connect WðPÞ � eWmðPÞ to the solution for each stage. According to (20), we have
WðPÞ � eWmðPÞ ¼ ð~w0ðPÞ þ ~w1ðPÞ þ � � � þ ~wm�1ðPÞ þ wmðPÞÞ � ð~w0ðPÞ þ ~w1ðPÞ þ � � � þ ~wm�1ðPÞ þ ~wmðPÞÞ
¼ wmðPÞ � ~wmðPÞ: ð26Þ
Now, we apply (15) of Theorem 2 to Eq. (21).
Vx½xmðPÞ� þ ðwmðPÞÞ2 ¼
Z

C

ðKðP;QÞÞ2bK ðP;QÞ ðVx½xmðQÞ� þ ðwmðQÞÞ2ÞdQ þ ðwmðPÞÞ2 � ðwmðPÞ � SmðPÞÞ2: ð27Þ
Notice that
jðwmðPÞÞ2 � ðwmðPÞ � SmðPÞÞ2j ¼ j2wmðPÞSmðPÞ � ðSmðPÞÞ2j 6 dðwmðPÞÞ2 þ 1þ 1
d

� �
ðSmðPÞÞ2
for any d > 0 (to be determined). We have
Vx½xmðPÞ� þ ðwmðPÞÞ2 6
Z

C

ðKðP;QÞÞ2bK ðP;QÞ ðVx½xmðQÞ� þ ðwmðQÞÞ2ÞdQ þ dðwmðPÞÞ2 þ 1þ 1
d

� �
ðSmðPÞÞ2: ð28Þ
At this point, we make use of the results in Theorem 1 of [15]. Since the function bK ðP;QÞ is at our disposal, we may
assume that bK ðP;QÞ satisfies either
max
P2C

Z
C

ðKðP;QÞÞ2bK ðP;QÞ dQ < 1;
or
max
Q2C

Z
C

ðKðP;QÞÞ2bK ðP;QÞ dP < 1:
For example, because of either (5) or (6) we can simply pick bK ðP;QÞ ¼ KðP;QÞ.
Now, according to Theorem 1 of [15], there is a constant C1, only depending on the kernel and the size of the phase space

C, such that
Vx½xmðPÞ� þ ðwmðPÞÞ2 6 C1 sup
P2C
ðdðwmðPÞÞ2 þ 1þ 1

d

� �
ðSmðPÞÞ2Þ: ð29Þ
Now, we can choose d such that C1d < 1. We then have
Vx½xmðPÞ� 6 C1 1þ 1
d

� �
sup
P2C
ðSmðPÞÞ2:
According to (22), we have
jSmðPÞj ¼ jSðPÞ � eWm�1ðPÞ þ K eWm�1ðPÞj ¼ jWðPÞ � eWm�1ðPÞ � KðWðPÞ � eWm�1ðPÞÞj

6 jWðPÞ � eWm�1ðPÞj þ
Z

C
KðP;QÞðWðQÞ � eWm�1ðQÞÞdQ

���� ����: ð30Þ
Combining (29) and (30) produces
Vx½xmðP0Þ� þ ðwmðP0ÞÞ2 6 C1 1þ 1
d

� �
sup
P2C

jWðPÞ � eWm�1ðPÞj þ
Z

C
KðP;QÞðWðQÞ � eWm�1ðQÞÞdQ

���� ����� �2

6 C1 1þ 1
d

� �
sup
P2C

1þ
Z

C
KðP;QÞdQ

���� ����� �2
 !

sup
P2C

WðPÞ � eWm�1ðPÞ
��� ���2

¼ C2 sup
P2C
jWðPÞ � eWm�1ðPÞj2; ð31Þ
where
C2 ¼ C1 1þ 1
d

� �
sup
P2C

1þ
Z

C
KðP;QÞdQ

���� ����� �2

:
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Now, by Tchebycheff’s inequality, for W samples of xmðPÞ and any e > 0,
P jwmðPÞ � ~wmðPÞj 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vx½xmðPÞ�

eW

r( )
> 1� e;
or by (26),
P jWðPÞ � eWmðn0Þj 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vx½xmðPÞ�

eW

r( )
> 1� e: ð32Þ
Combining (31) and (32) produces
P jWðPÞ � eWmðPÞj 6
ffiffiffiffiffiffiffiffi
C2

eW

r
supn02CjWðPÞ � eWm�1ðPÞj

( )
> 1� e;
which implies (25) if we choose
W P
C2

ek2 :
This completes the proof of Theorem 3. h

The random variables xmðPÞ can be used to approximate the solution pointwise. However, we are often interested in rep-
resenting the solution everywhere as a sum of basis functions. In the rest of this section, we will adopt this point of view. We
will obtain an estimate similar to that in Theorem 3. Additional details can be found in [10].

To solve (21) for wmðPÞ, we assume that the solution and our approximations to it can be represented in the form
WðPÞ ¼
X1
i¼0

aifiðPÞ; ð33Þ
where ffiðPÞg1i¼0:form a complete set of orthonormal basis functions on the phase space C. For later convenience, we assume
that there is a finite number B such that
max
P2C
jfiðPÞj 6 B: ð34Þ
Assume that the solution wmðPÞ of (21) has the form
wmðPÞ ¼
X1
i¼0

bm
i fiðPÞ: ð35Þ
Orthonormality produces
bm
i ¼

Z
C

wmðPÞfiðPÞdP: ð36Þ
We now use f, defined by (10), to estimate all the coefficients bi for i up to a large and fixed integer N. Assume that we have
chosen fbSðPÞ; bK ðP;QÞg satisfying (8). For each i, we can then define
fm
i ¼

fiðn0ÞbSðn0Þ
xmðn0Þ; ð37Þ
where xmðP0Þ is defined by (11) with SðPÞ replaced by SmðPÞ, defined by (22). Then, according to Theorem 1,
E½xmðP0Þ� ¼ wmðPÞ
E½fm

i � ¼ bm
i ;

ð38Þ
so we can use fm
i to estimate each of the coefficients bm

i . Assume that the estimated values of bm
i are ~bm

i and define
~am
i ¼

Xm

k¼0

~bk
i ; ð39Þ
where we have assumed that the initial guess eW0ðPÞ has the form
eW0ðPÞ ¼
XN

i¼0

~b0
i fiðPÞ: ð40Þ
Then, the estimated solution eWmðPÞ can be written as
eWmðPÞ ¼
XN

i¼0

~am
i fiðPÞ: ð41Þ
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Theorem 4. Assume that either (5) or (6) is satisfied, and that the phase space C has finite measure, i.e., there is a number jC such
that
jC �meas½C� <1: ð42Þ
Then for any e > 0 and k < 1, there exists a sufficiently large integer W0 which does not depend on m, such that
P sup
P2C
jWðPÞ � eWmðPÞj < C4ffiffiffiffiffiffiffiffi

W0
p sup

P2C
jWðPÞ � eWm�1ðPÞj þ sup

P2C
jrN j

� �
P 1� e; ð43Þ
where
rNðPÞ �
X1

i¼Nþ1

bifiðPÞ: ð44Þ
Remark. According to (20),
X1
i¼Nþ1

bifiðPÞ ¼
X1

i¼Nþ1

aifiðPÞ: ð45Þ
Thus, we can choose N so large that rNðPÞ is no more than any error level that we prescribe. Therefore, (43) expresses geo-
metric convergence with a small error modification that is caused by the truncation of the infinite series expansion.

Proof. For each i, we can follow the proof of Theorem 3 to arrive at
Vx½xmðP0Þ� 6 C1 sup
P2C
ðSmðPÞÞ2; ð46Þ
where the constant C1 does not depend on stage index m. Now, according to Eq. (15)
V f½fm
i � ¼

Z
C

fiðPÞbSðPÞ
 !2

Vx½xmðPÞ�bSðPÞdP þ
Z

C

fiðPÞbSðPÞ
 !2

ðwmðPÞÞ2bSðPÞdP � hwm; fii2

6 C1

Z
C

ðfiðPÞÞ2bSðPÞ ðVx½xmðPÞ� þ ðwmðPÞÞ2ÞdP 6 C2 sup
P2C
ðSmðPÞÞ2; ð47Þ
where we have used the orthonormality of the basis set ffiðPÞg1i¼0 and
C2 ¼ sup
P2C

C1bSðPÞ :

Therefore, using (30), we obtain
V f½fm
i � 6 C2 sup

P2C
jWðPÞ � eWm�1ðPÞj þ

Z
C

KðP;QÞ WðQÞ � eWm�1ðQÞ
� 	

dQ
���� ����� �2

6 C2 sup
P2C

1þ
Z

C
KðP;QÞdQ

���� ����� �2
 !

sup
P2C
jWðPÞ � eWm�1ðPÞj2 6 C3 sup

P2C
jWðPÞ � eWm�1ðPÞj2: ð48Þ
On the other hand, according to (20) and (23), we have
WðPÞ � eWmðPÞ ¼ wmðPÞ � ~wmðPÞ ¼
X1
i¼0

bm
i fiðPÞ �

XN

i¼0

~bm
i fiðPÞ ¼

XN

i¼0

ðbm
i � ebm

i ÞfiðPÞ þ
X1

i¼Nþ1

bifiðPÞ

¼
XN

i¼0

ðbm
i � ebm

i ÞfiðPÞ þ rNðPÞ; ð49Þ
where the truncation error rNðPÞ can be made as small as we want upon choosing a large N. We then have
jWðPÞ � eWmðPÞj 6
XN

i¼0

jbm
i � ~bm

i jjfiðPÞj þ jrNðPÞj 6 B
XN

i¼0

jbm
i � ~bm

i j þ jrNðPÞj: ð50Þ
According to Tchebycheff’s inequality, for any ei > 0;
P bm
i � ~bm

i

��� ��� <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V f½fm

i �
eiW

s8<:
9=;P 1� ei: ð51Þ
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Using (48), we obtain
P jbm
i � ~bm

i j <

ffiffiffiffiffiffiffiffiffi
C3

eiW

s
sup
P2C
jWðPÞ � eWm�1ðPÞj

( )
P 1� ei: ð52Þ
Thus, combining (50) with (52) produces
P jWðPÞ � eWmðPÞj < C4ffiffiffiffiffiffi
W
p sup

P2C
jWðPÞ � eWm�1ðPÞj þ sup

P2C
jrN j

� �
P
YN

i¼0

ð1� eiÞ; ð53Þ
where
C4 ¼ B
ffiffiffiffiffiffi
C3

p XN

i¼0

1
ei

 !1
2

: ð54Þ
Now, for any e > 0, we choose ei > 0; so that
YN
i¼0

ð1� eiÞP 1� e: ð55Þ
Then, choose W0 such that
W0 P
C4

k

� �2

: ð56Þ
For such a W0; we have
P sup
P2C
jWðPÞ � eWmðPÞj < C4ffiffiffiffiffiffiffiffi

W0
p sup

P2C
jWðPÞ � eWm�1ðPÞj þ sup

P2C
jrN j

� �
P 1� e: ð57Þ
The proof is completed. h

The two theorems in this section not only show that the sequence f eWmðPÞg1m¼0 is convergent, but also shows that the con-
vergence is geometric, at least in a probabilistic sense.

Remark. The theory just presented establishes the existence of an integer W0 such that our adaptive algorithm will
converge geometrically provided that W0 independent random walks are processed in each adaptive stage. It is, of course, of
interest to determine the smallest value for W0 that satisfies the error constraints of the transport problem under study.
However, this is not easily found through the application of our very general theorems, which are intended only to establish
the existence of a minimal W0. In fact, the final step in our argument makes use of Tchebycheff’s inequality, which, because it
is completely general, provides extremely conservative estimates of the constants needed to determine W0 accurately. In
practice, much smaller numbers of random walks per stage will suffice to produce geometric convergence. We discuss this
issue more fully in the next section.
4. Model two dimensional transport problems

To illustrate the theory developed in the previous sections, we consider the coupled system of ordinary differential
equations
ow1
ox þ

P
t
ðx; yÞw1ðx; yÞ ¼

P
s
ðx; yÞ

P4
j¼1

p1jwjðx; yÞ þ s1ðx; yÞ;

� ow2
ox þ

P
t
ðx; yÞw2ðx; yÞ ¼

P
s
ðx; yÞ

P4
j¼1

p2jwjðx; yÞ þ s2ðx; yÞ;

ow3
oy þ

P
t
ðx; yÞw3ðx; yÞ ¼

P
s
ðx; yÞ

P4
j¼1

p3jwjðx; yÞ þ s3ðx; yÞ;

� ow4
oy þ

P
t
ðx; yÞw4ðx; yÞ ¼

P
s
ðx; yÞ

P4
j¼1

p4jwjðx; yÞ þ s4ðx; yÞ;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð58Þ
where
0 < x < a; 0 < y < b;
w1ð0; yÞ ¼ Q1ðyÞ; w2ða; yÞ ¼ Q 2ðyÞ;

w3ðx;0Þ ¼ Q 3ðxÞ; w4ðx; bÞ ¼ Q4ðyÞ;
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and where we assume
X4

j¼1

pji ¼ 1; i ¼ 1;2;3;4: ð59Þ
This system describes a transport problem in a rectangle R: 0 < x < a; 0 < y < b, and the functions w1ðx; yÞ, w2ðx; yÞ, w3ðx; yÞ
and w4ðx; yÞ are the right, left, up and down moving fluxes, respectively.

This problem specializes to one dimensional transport on horizontal and vertical lines when the equations are suitably
decoupled and the resulting decoupled system can be easily solved analytically. Thus, this family of problems plays a very
useful role in debugging Monte Carlo codes such as the one developed from the algorithm described in this paper. The four
boundary conditions characterize the flux incident on the boundaries of the rectangle from the exterior and prescribe a un-
ique solution of the system (58) [17].

The system (58) can be written in matrix form by setting
K �
X

s

ðx; yÞ

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

0BBB@
1CCCA; ð60Þ

D �

o
ox

� o
ox

o
oy

� o
oy

0BBBB@
1CCCCA; ð61Þ

X
�

P
t
ðx; yÞ P

t
ðx; yÞ P

t
ðx; yÞ P

t
ðx; yÞ

0BBBBBBB@

1CCCCCCCA; ð62aÞ

Sðx; yÞ �

s1ðx; yÞ
s2ðx; yÞ
s3ðx; yÞ
s4ðx; yÞ

0BBB@
1CCCA; ð63Þ

W �

w1ðx; yÞ
w2ðx; yÞ
w3ðx; yÞ
w4ðx; yÞ

0BBB@
1CCCA: ð64Þ
Then Eq. (58) can be written
DWþ RW ¼ KWþ S: ð65Þ
Now assume that
W� �

w�1ðx; yÞ
w�2ðx; yÞ
w�3ðx; yÞ
w�4ðx; yÞ

0BBB@
1CCCA:
is a solution of the adjoint system of equations:
ð�Dþ R� K 0ÞW� ¼ S�ðx; yÞ
where
0 < x < a; 0 < y < b

w�1ða; yÞ ¼ Q �1ðyÞ; w�2ð0; yÞ ¼ Q�2ðyÞ;
w�3ðx; bÞ ¼ Q �3ðxÞ; w�4ðx;0Þ ¼ Q �4ðyÞ:
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Here K 0 is the matrix transpose of K and the functions
S�ðx; yÞ �

s�1ðx; yÞ
s�2ðx; yÞ
s�3ðx; yÞ
s�4ðx; yÞ

0BBB@
1CCCA ð66Þ
are specified by the problem we wish to solve. That is, the problem is to estimate the inner product
I ¼ ðS�;WÞ ¼

R R
s�1ðx; yÞw1ðx; yÞdxdy

þ
R R

s�2ðx; yÞw2ðx; yÞdxdy

þ
R R

s�3ðx; yÞw3ðx; yÞdxdy

þ
R R

s�4ðx; yÞw4ðx; yÞdxdy

0BBB@
1CCCA:
Reciprocity then allows the conclusion (assuming that the boundary conditions for the adjoint system are dual to those for
the original system, so that all boundary integrals vanish)
ðS;W�Þ ¼ ððDþ R� KÞW;W�Þ ¼ ðDW;W�Þ þ ðRW;!�Þ � ðKW;W�Þ ¼ ðW;�DW�Þ þ ðW;RW�Þ � ðW;K 0W�Þ
¼ ðW; ð�Dþ R� K 0ÞW�Þ ¼ ðW; S�Þ
Often it is more convenient to use the integral form of the RTE. If we assume that all the coefficient functions Rtðx; yÞ;Rsðx; yÞ
do not depend on x or y; then Eq. (58) can be converted to the following system of integral equations:
w1ðx; yÞ ¼ Rs
P4
j¼1

p1j

R x
0 e
�
P

t

ðx�x0Þ
wjðx0; yÞdx0 þ S1ðx; yÞ;

w2ðx; yÞ ¼
P

s

P4
j¼1

p2j

R a
x e
�
P

t

ðx0�xÞ
wjðx0; yÞdx0 þ S2ðx; yÞ;

w3ðx; yÞ ¼
P

s

P4
j¼1

p3j

R y
0 e
�
P

t

ðy�y0Þ
wjðx; y0Þdy0 þ S3ðx; yÞ;

w4ðx; yÞ ¼
P

s

P4
j¼1

p4j

R b
y e
�
P

t

ðy0�yÞ
wjðx; y0Þdy0 þ S4ðx; yÞ;

S1ðx; yÞ �
R x

0 e
�
P

t

ðx�x0Þ
s1ðx0; yÞdx0 þ e

�
P

t

x
Q1ðyÞ;

S2ðx; yÞ �
R a

x e
�
P

t

ðx0�xÞ
s2ðx0; yÞdx0 þ e

�
P

t

ða�xÞ
Q2ðyÞ;

S3ðx; yÞ �
R y

0 e
�
P

t

ðy�y0Þ
s3ðx; y0Þdy0 þ e

�
P

t

y
Q 3ðxÞ;

S4ðx; yÞ �
R b

y e
�
P

t

ðy0�yÞ
s4ðx; y0Þdy0 þ e�Rtðb�yÞQ 4ðxÞ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð67Þ
We write this in matrix form by defining the matrix K; where
K1j ¼ Rsp1j

Z x

0
e�Rtðx�x0 Þdx0; K3j ¼ Rsp3j

Z y

0
e�Rtðy�y0 Þdy0;

K2j ¼ Rsp2j

Z a

x
e�Rtðx0�xÞdx0; K4j ¼ Rsp4j

Z b

y
e�Rtðy0�yÞdy0

ð68Þ
for j ¼ 1; . . . ;4: Then we have:
W ¼ KWþ S; ð69Þ
where
S �

S1ðx; yÞ
S2ðx; yÞ
S3ðx; yÞ
S4ðx; yÞ

0BBB@
1CCCA: ð70Þ
Based on the algorithm described above, we have executed some tests for a wide range of choices of cW 0 ¼ the number of
random walks selected for each adaptive stage. As stated in the Remark following Theorem 4, the theory predicts very con-
servative values for W0: However, much smaller values of W0 can produce the sought geometric convergence. For instance,
our numerical experiments show that W0 ffi 49;000 produces stable geometric convergence for the data:
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a ¼ 5; b ¼ 4;
X

a

¼ 0:5;
X

s

¼ 0:5;

pij ¼

0:4 0:1 0:2 0:4
0:2 0:3 0:1 0:3
0:2 0:1 0:1 0:1
0:2 0:5 0:6 0:2

0BBB@
1CCCA
with boundary value functions (which concentrate the source on the x ¼ 0 and y ¼ b boundary lines)
Q 1ðyÞ ¼
y
b
; 0 < y < b; Q 2ðyÞ ¼ 0; 0 < y < b;

Q 3ðxÞ ¼ 0; 0 < x < a; Q 4ðxÞ ¼ 1� x
a
; 0 < x < a:
For all of the numerical experiments reported here we represented the approximate solution as a 10th order polynomial
in both x and y, so that N ¼ 100 in Theorem 4. Fig. 1 plots the log10 values of the variances versus the number of adaptive
stages for W0 ¼ 50;000;80;000 and 100;000 while Fig. 2 depicts the cases W0 ¼ 60;000;70;000;80;000 and 100,000 and
concentrates attention on just the first 50 adaptive stages. We note that increasing W0 does increase the rate of convergence,
as the theory predicts, and results in a smaller number of stages to achieve a fixed precision. However, optimal computational
efficiency requires a balance between the number of random walks per stage and the number of stages. If we ask, for example,
which of the five choices of W0 produces the most efficient computation, the answer may be found by fixing a desired level of
accuracy, estimating the convergence rates from the slopes in the figures and calculating the run time required to achieve
that for each choice of W0. We can easily also estimate the computation time required to achieve any fixed error level with
conventional Monte Carlo since the initial stage of each adaptive run is just conventional Monte Carlo based on W0 random
walks.

From Figs. 1 and 2, we can see that the first 50,000 random walks produces roughly 1.5 decimal digits of accuracy. Each
additional decimal digit of accuracy will require roughly a 100-fold increase in the number of random walks based on the
central limit theorem rate of convergence for conventional Monte Carlo. Since 50,000 random walks took about 404 s, to
achieve an additional (say) 5 decimal digits of accuracy would require about 404	 1005 s, which is more than 1 year!

To illustrate how to estimate the run time to achieve this accuracy for each adaptive case, we select the case W0 ¼ 60;000.
The run time per stage is about 485 s and the following table shows that this case produces a geometric error reduction factor
of k ¼ 0:747. We next observe that the minimum stage number N to achieve reduction of the initial error by 5 additional dec-
imal digits produces the inequality kN

6 10�5; establishing that N ¼ 40 would suffice. We conclude that the total time needed
for the case W0 ¼ 60;000 to achieve the same error reduction as in the conventional illustration would be
40	 485 ¼ 19;400 s, which is a little more than 5 h! The gain in computational efficiency resulting from the use of our algo-
rithm compared with conventional Monte Carlo in this problem is thus 404	 1005=40	 485 ¼ 2:05	 107.
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Fig. 1. Convergence characteristics for three choices of W0; I : W0 ¼ 50;000; II : W0 ¼ 80; 000; III : W0 ¼ 100;000.
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Fig. 2. Convergence characteristics for four choices of W0; I : W0 ¼ 60;000; II : W0 ¼ 70;000; III : W0 ¼ 80; 000; IV : W0 ¼ 100;000.
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The following table displays the estimates of k that correspond to the different values of W0 for each of the 5 cases:
W0
 0  0.5

 0

0.5

 1

1.5

 2

2.5
50,000
 1  1.5  2  2.5  3
x

Fig. 3. Scalar flux f
60,000
 3.5  4  4.5  5  0

or two dimensional trans
70,000
 0.5
 1

 1.5
 2

 2.5
 3

 

port problem.
80,000
3.5
 4

y

100,000
Estimated k
 0.958
 0.747
 0.57
 0.549
 0.465

Time per stage, in s
 404
 485
 566
 646
 808
The table uses the inequality (1) to determine k
Em 6 kEm�1;
where we have replaced the error term Em by the standard deviation, since we do not have the exact solution for this prob-
lem. In summary, our analysis reveals that the case W0 ¼ 70;000 would require the least run time and is, therefore, the most
efficient of the 5 chosen for this study.
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Fig. 3 plots the scalar flux Wðx; yÞ for this problem, which is simply the sum of the four component solutions since the
angular dependence is discrete for this problem: Wðx; yÞ ¼

P4
i¼1wiðx; yÞ. Note especially the lack of any polynomial artifacts

in this plot, even though the solution method represents the solution by a polynomial in each independent variable.

5. Summary, conclusions and future work

In this paper, we have constructed sequential Monte Carlo algorithms to solve a rather general family of transport prob-
lems and we have established rigorous conditions that will guarantee geometric convergence with probability 1. While our
theory falls short of establishing both necessary and sufficient conditions for this accelerated convergence, numerical evi-
dence strongly suggests that the sufficient conditions outlined here lead to quite conservative estimates of the number of
random walks per stage that will assure geometric learning. The question then remains: how, in practice, one can determine
adequate choices of W0 that will assure geometric convergence without incurring large computational costs?

We have found that reliable error estimates can be based on the residual which, with the sequential correlated sampling
method, is automatically computed at the end of each adaptive stage, since this function provides the source to the next
adaptive stage. Our experience with this method is that it is very robust, producing very impressive results over a wide range
of transport problems. As well, the residual and the error are closely coupled for many interesting applications (see, e.g. [15]
). We are successfully applying the ideas of this paper to challenging practical problems for which a very accurate solution of
the global transport equation is needed to serve as a computational ‘‘gold standard”. Such methods are therefore playing a
major role for a growing number of real problems for which either no other solution method is adequate, or as a standard
against which to compare other less expensive and less accurate solution techniques.

In other publications we will provide similar results concerning the geometric convergence of adaptive Monte Carlo algo-
rithms based on successive application of importance sampling estimators. Our conviction is that no single Monte Carlo
method can hope to solve all transport problems equally well. Our experience, in fact, suggests that geometrically conver-
gent importance sampling algorithms apply to some transport problems that are not as well treated by sequential correlated
sampling algorithms as those described in this paper, and that both methods should be pursued.
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Appendix

Proof of Theorem 2

Remark. We rely on the following two basic formulas for the conditional mean and variance of any random variables
X and Y,
EX ½X� ¼ EY ½EX ½XjY��; ðA:1Þ

and
VX ½X� ¼ EY ½VX ½XjY�� þ VY ½EX ½XjY��: ðA:2Þ
For proofs of these results, see [16].

Proof of Theorem 2. By conditioning on gP0
and using (A.2), we obtain
Vx½xðP0Þ� ¼ Eg½Vx½xðP0ÞjgP0
�� þ Vg½Ex½xðP0ÞjgP0

��; ðA:3Þ
where, and hereafter, Vx � Vxð�Þ, Ex � Exð�Þ, Vg � VgP
, Eg � EgP

, and so on. We have
Vx½xðP0Þ� ¼ Vx½xðP0ÞjgP0
¼ 1�p̂ðP0ÞþVx½xðP0ÞjgP0

¼ 0�ð1� p̂ðP0ÞÞþEg½Ex½xðP0ÞjgP0
��2�fEg½Ex½xðP0ÞjgP0

��g2
: ðA:4Þ
The first term of the right hand side is equal to zero because, under the condition gP0
¼ 1, xðP0Þ is deterministic, while the

last term is equal to ðEx½xðP0Þ�Þ2, owing to (A.1). Again, applying (A.1) on the second term by conditioning ð:xðP0ÞjgP0
¼ 0Þ on

n1; we obtain
Vx½xðP0Þ� ¼ En½Vx½xðP0ÞjgP0
¼ 0; n1��ð1� p̂ðP0ÞÞ þ Vn½Ex½xðP0ÞjgP0

¼ 0; n1��ð1� p̂ðP0ÞÞ þ ½Ex½xðP0ÞjgP0

¼ 1��2p̂ðP0Þ þ ½Ex½xðP0ÞjgP0
¼ 0��2ð1� p̂ðP0ÞÞ � ðEx½xðP0Þ�Þ2 ¼

Z
C

Vx½xðP0ÞjgP0
¼ 0; n1

¼ Q �bK ðP0;QÞdQ þ En½Ex½xðP0ÞjgP0
¼ 0; n1��2ð1� p̂ðP0ÞÞ � fEn½Ex½xðP0ÞjgP0

¼ 0; n1��g2ð1� p̂ðP0ÞÞ þ ðSðP0ÞÞ2p̂ðP0Þ þ ½Ex½xðP0ÞjgP0
¼ 0��2ð1� p̂ðP0ÞÞ � ðEx½xðP0Þ�Þ2; ðA:5Þ



9776 R. Kong, J. Spanier / Journal of Computational Physics 227 (2008) 9762–9777
where, it can be easily verified that Ex½:xðP0ÞjgP0
¼ 1� ¼ SðP0Þ. According to (A.1), the third term and the fifth term cancel out.

We then have
Vx½xðP0Þ� ¼
Z

C
Vx½xðP0ÞjgP0

¼ 0; n1 ¼ Q �bK ðP0;QÞdQ þ
Z

C
fEx½xðP0ÞjgP0

¼ 0; n1

¼ Q �g2 bK ðP0;QÞdQ þ ðSðP0ÞÞ2p̂ðP0Þ � ðEx½xðP0Þ�Þ2: ðA:6Þ
According to the definition of xðP0Þ, (11), we have
ðxðP0ÞjgP0
¼ 0; n1 ¼ QÞ ¼ SðP0Þ þ

KðP0;QÞbK ðP0;QÞ
xðQÞ: ðA:7Þ
Substituting this into (A.6) produces
Vx½xðP0Þ� ¼
Z

C
Vx½SðP0Þ þ

KðP0;QÞbK ðP0;QÞ
xðQÞ�bK ðP0;QÞdQ þ

Z
C

Ex½SðP0Þ þ
KðP0;QÞbK ðP0;QÞ

xðQÞ�
( )2 bK ðP0;QÞdQ

þ ðSðP0ÞÞ2p̂ðP0Þ � ðEx½xðP0Þ�Þ2: ðA:8Þ
Using (12), we finally obtain an equation governing Vx½xðP0Þ�
Vx½xðP0Þ� ¼
Z

C

KðP0;QÞbK ðP0;QÞ

 !2

Vx½xðQÞ�bK ðP0;QÞdQ þ
Z

C
ðSðP0Þ þ

KðP0;QÞbK ðP0;QÞ
xðQÞÞ2 bK ðP0;QÞdQ þ ðSðP0ÞÞ2p̂ðP0Þ � ðWðP0ÞÞ2;

ðA:9Þ
or
Vx½xðP0Þ� þ ðWðP0ÞÞ2 ¼
Z

C

KðP0;QÞbK ðP0;QÞ

 !2

ðVx½xðQÞ� þ ðWðQÞÞ2ÞbK ðP0;QÞdQ þ ðSðP0ÞÞ2 þ 2SðP0Þ
Z

C
KðP0;QÞWðQÞdQ :

ðA:10Þ
Since
R

C KðP0;QÞWðQÞdQ ¼ WðP0Þ � SðP0Þ, we have
Vx½xðP0Þ� þ ðWðP0ÞÞ2 ¼
Z

C

KðP0;QÞbK ðP0;QÞ

 !2

Vx½xðQÞ� þ ðWðQÞÞ2
� 	bK ðP0;QÞdQ þ ðWðP0ÞÞ2 � ðWðP0Þ � SðP0ÞÞ2: ðA:11Þ
(14) is proved. Now, let us prove (15). Applying (A.2)–(A.10), we obtain
V f½f� ¼ En½V f½fjn0�� þ Vn½Ef½fjn0�� ¼
Z

C
V f½fjn0 ¼ P�bSðPÞdP þ En½Ef½fjn0��2 � fEn½Ef½fjnP0��g2

¼
Z

C
V f

S�ðPÞbSðPÞ xðPÞ
" #bSðPÞdP þ

Z
C

Ef
S�ðPÞbSðPÞ xðPÞ
" #( )2bSðPÞdP � En½Ef½fjn0��f g2

: ðA:12Þ
Using (A.2) and (A.10), we finally obtain a formula for V f½f�
V f½f� ¼
Z

C

S�ðPÞbSðPÞ
 !2

Vx½xðPÞ�bSðPÞdP þ
Z

C

S�ðPÞbSðPÞ
 !2

WðPÞð Þ2bSðPÞdP � hW; S�i2; ðA:13Þ
or
V f½f� þ hW; S�i2 ¼
Z

C

S�ðPÞbSðPÞ
 !2

ðVx½xðPÞ� þ ðWðPÞÞ2ÞbSðPÞdP: ðA:14Þ
The proof is completed. h
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